

WP5: Perspectives of forest operations and revitalization of degraded forest Task 5.3 Topsoil cover engineering & Task 5.4 Planting with topsoil cover

Francesco Valentini, Alessandro Sorze, Andrea Dorigato and Alessandro Pegoretti

University of Trento and INSTM research unit, Department of Industrial Engineering-Italy francesco.valentini@unitn.it, alessandro.sorze@unitn.it

Introduction

AIM: Top-soil cover (TSC) and Soil Conditioner (SC) engineering and planting to promote plant growth

SOIL CONDITIONER

UNITN developed:

- SC as hydrogels based on biopolymer xanthan gum (X) dissolved in water and mixed with cellulose pulp (W).
- **TSC** as **films** based on **cross-linked** xanthan gum and wood fibers.

Methodology

Production of xanthan gum hydrogels (for SC)

Production of xanthan gum cross-linked hydrogels (for TSC)

Casting and drying in air

Oven 165°C

Results

Grass growth evaluation with SC

Soil + SC: Increases grass survival under drought conditions

Tomato Planting trial with TSC and SC

Department of Industrial Engineering, University of Trento, Italy 3 rows of 24 Solanum lycopersicum var. cerasiforme plants each

Fruit yield compared to the untreated plants

Treatment	Yield I row (%)	Yield II and III row (%)
SC	+33.9	-44.2
TSC	+5.2	-28.9

CONTACT INFO:

www.oneforest.eu // info@oneforest.eu // Twitter @Oneforest_H2020 // LinkedIn @one-forest-h2020

III row III row

I row

Facilities:

- Mechanical properties (Dynamical mechanical analysis, Viscosimeters, Electro-mechanical and
- servohydraulic testing machines, impact properties, VICAT/HDT) Thermal properties (Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Determination of the Limiting Oxygen Index (LOI), Thermal diffusivity (LFA), thermal conductivity (HFM)
- **Electrical properties** (Resistivity) Others (Gas permeability, Light-, electronic microscopy, pycnometer, infrared spectroscopy, rheology,

Forest planting trial

Central Nursey of Forestal Catalana, Girona, Spain Narrow-leaved ash (*Fraxinus angustifolia*) and alder (*Alnus glutinosa*)

mixture

TSC promotes plant growth

Dataset of costs and environmental impacts

	Our products	Commercial product
SC	19.7 €/kg	5 - 25 €/kg
TSC	0.41 €/unit => UTR (16 cm diameter)	0.5 - 6 €/unit (25-45 cm diameter)

Parameter	Unit	SC (1kg)	TSC-UTR (1 unit)
Abiotic depletion (fossil fuels)	MJ	1.17E+02	2.27E+00
Global warming (GWP100a)	kg CO ₂ eq	9.91E+00	1.84E-01
Ozone layer depletion (ODP)	kg CFC-11 eq	5.21E-07	2.02E-08
Fresh water aquatic ecotox.	kg 1,4-DB eq	9.89E+00	1.63E-01
hotochemical oxidation	kg C ₂ H ₄ eq	2.44E-03	4.12E-05
Acidification	kg SO ₂ eq	4.74E-02	8.99E-04
Eutrophication	kg PO ₄ eq	2.93E-02	4.34E-04
Water scarcity footprint	m³ eq.	3.49E+00	1.17E-01

The Polymer & Composites laboratory

Research activities:

- Materials for Thermal Energy Storage (TES) applications
- Materials for the the thermal insulation and management Recycled materials at low environmental impact
- Biobased and biodegradable materials
- Life Cycle Assessment of industrial products Self sensing/self healing structural composites

ageing/conditioning tests at controlled T, H)

Multifunctional 3D printed materials

